SINERGIE WEBINAR

Stability Enhancement of Inverter Dominated Systems using Virtual Inertia Control

Lalitha Subramanian

Thesis Advisors

Assoc. Prof. Gooi Hoay Beng, School of EEE, NTU Prof. Nouredine Hadjsaid, G2Elab, Grenoble INP, UGA Assoc. Prof. Vincent Debusschere, G2Elab, Grenoble INP, UGA

12/22/2021

Introduction

Conclusion

Motivation

Human Induced Climate Change

Source: NASA's Global Climate Change Website: A Degree of Concern: Why Global Temperatures Matter (2019)

Extreme weather events challenging the resiliency of Power System

High variability from the Generation-side

Annual Variable Renewable Energy (VRE) Share and Integration Phase as of 2018

Source: IEA Renewables 2019 report: Analysis and Forecasts to 2024

2

Research Interest

Intermittencies of VRE challenging the balancing control
The VREs are 'non-synchronous' inverter-based resources (IBRs)
Reducing the inherent inertial response capability of the system

Source: California Independent System Operator, www.caiso.com

Intermittency of VREs – PV and Wind

Source: https://eelpower.co.uk/challenges-for-the-grid

3

Research Interest

> Non-synchronous VREs - inverter-based resources (IBRs) and Power System Inertia

Objectives

- To Study and characterize the different flexible resources that can deliver balancing services.
- To explore predictive control strategies for grid-following and grid-forming converter controls.
- To test and validate the proposed control strategies on a power hardware-in the-loop platform.
- ➤To study the impact of the frequency response control parameters on the oscillatory stability of the system

Why Hybrid Energy Storage?

Desired Frequency Response Characteristics

Grid code requirements

Region	Instantaneous Δf limits (Hz)	Δf_{ss} limits (Hz)	ROCOF limits (Hz/s)
Singapore	49.7 UFLS	±0.2	± 1 for 500s window

- Combine different operating characteristics based on application
- Power and Energy densities
- Battery slow varying power
- Supercapacitor high frequency demand
- > Other flexible resources can be represented by an equivalent virtual battery model $\int_{C(t) = -d_s} C(t) ds$

$$\begin{aligned} C(t) &= -d_s C(t) - P(t) \\ C_{min} &\leq C(t) \leq C_{max} \\ P^- &\leq P(t) \leq P^+ \end{aligned}$$

Energy Storage Characteristics

Source: https://css.umich.edu/factsheets/us-grid-energy-storage-factsheet

Types of Inverter-based Resources (IBRs)

Grid-following IBRs

Grid-forming IBRs

> Frequency-responsive grid-following IBR control

- Frequency-responsive grid-following IBR implemented using model predictive control (MPC)
- **>** Rate-based MPC controller
- Coordinating Frequency-responsive DERs
- ➤ Validation

Isochronous grid-forming control
Grid-forming control implemented with MPC
Validation

Introduction

Main Contributions

Conclusion

Grid-following IBR – Model Predictive Control

Grid-forming IBR – MPC implementation and Validation

10

Test System and Simulation Results

(a) Frequency Response with Different Synthetic Inertia Control Coefficients.

(b) Power Injected by VICs for Fast-Frequency Support.

Isc

lpv Load

PV Intermittency

The remaining system, apart from the inverter is simulated on OPAL RT in real-time
Challenges with OPAL RT run-time
Switched to in-built ARTEMIS model reduction

Step load change

Scenario B

Step load change

Step load change

Scenario A

Summary of Contributions

- > A storage sizing methodology for primary frequency and inertia reserve requirements
- ➤A model predictive control strategy with rate-based linearization for elimination of offset errors in grid-friendly DERs.
- ➤A distributed model predictive control framework for grid-friendly DERs in grid-forming and grid-following operation modes.
- > Validation of proposed control strategies using power hardware-in-the-loop experiment.
- ➤A stochastic backward-forward sweep power flow algorithm of islanded microgrids with microgrid frequency as a state-variable.
- Small signal modelling of grid-following and grid-forming DERs. Analysis of the impact of frequency response parameter variation on the small signal stability of the system.

Interesting Areas for Future Work

- > Requirements for fault-ride through capabilities (FRC) for non-synchronous reserve providers.
- Placement of inertia reserves in large power systems.
- Demand-side elasticity requirement and market mechanisms for new types of ancillary services.
- > Urban energy planning for collective self-consumption and decentralization
- Singaporean context possible interconnections for importing green energy (huge impact on system reliability) GW scale energy storage systems and subsea HVDC
- Economic challenges impacting power producers with increasing penetration of VREs, scope for potential capacity markets.
- Pay for energy consumption -> Pay for reliability

Publications

- 1. L. Subramanian, V. Debusschere, H. B. Gooi and N. Hadjsaid, "A Distributed Model Predictive Control Framework for Grid-friendly Distributed Energy Resources," in IEEE Transactions on Sustainable Energy, doi: 10.1109/TSTE.2020.3018913.
- 2. L. Subramanian, V. Debusschere, H. B. Gooi, and N. Hadjsaid, "A Cooperative Rate-based Model Predictive Framework for Flexibility Management of DERs," in IEEE Transactions on Energy Conversion, doi:10.1109/TEC.2021.3105612.
- L. Subramanian, V. Debusschere and H. B. Gooi, "Design and Control of Storage Systems for Voltage Source Controlled Autonomous Microgrids," 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 2019, pp. 1-5, doi: 10.1109/PESGM40551.2019.8973887.
- 4. L. Subramanian and H. B Gooi, "Stabilizing Droop Variation of Converter-Connected Generation in Autonomous Microgrids with Virtual Inertia Control," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, 2018, pp. 3746-3753, doi: 10.1109/ECCE.2018.8557936.
- 5. L. Subramanian and H. B. Gooi, "Stochastic Backward/Forward Sweep Power Flow Analysis for Islanded Microgrids," 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, 2018, pp. 48-53, doi: 10.1109/ISGTAsia. 2018.8467763.
- 6. L. Subramanian, M. Goundiam, V. Debusschere, H. B. Gooi, R. Caire, and N. Hadjsaid, "Impact of the Interaction of Synchronous Machines and Virtual Provisions on the Small Signal Stability of Microgrids," CIRED 2021, Geneva, 2021. (Accepted)

Thanks for the attention

