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Introduction Main Contributions Conclusion

Motivation

Human Induced Climate Change 
Source: NASA’s Global Climate Change Website: A 

Degree of Concern: Why
Global Temperatures Matter (2019) Annual Variable Renewable Energy (VRE) Share and 

Integration Phase as of 2018
Source: IEA Renewables 2019 report: Analysis and Forecasts to 2024

➢ Extreme weather events challenging the 
resiliency of Power System

➢ High variability from the Generation-side
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Research Interest
➢Intermittencies of VRE challenging the balancing control
➢The VREs are ‘non-synchronous’ inverter-based resources (IBRs)
➢Reducing the inherent inertial response capability of the system

Increased Ramp Requirements
Source: California Independent System Operator, www.caiso.com 

Intermittency of VREs – PV and Wind
Source: https://eelpower.co.uk/challenges-for-the-grid
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Research Interest
➢ Non-synchronous VREs - inverter-based resources (IBRs) and Power System Inertia

Frequency Response 
Characteristics

Source: Tielens, P., Van Hertem, "The
relevance of inertia in power systems”,
Renewable and Sustainable Energy Reviews,
Vol. 55, March 2016, pp. 999-1009.

With Increasing Penetration of VREs

Frequency nadir

➢ ROCOF -> inertia

➢ fnadir -> inertia and

response delay of
primary frequency
control
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Flexibility Solutions - Objectives

Projected Storage requirements
(Expected increase ~ 3 GW over 5 years)

Source: UK National Grid Future Energy Scenarios 2019

Actuator: Energy 

Storage mix Control 
Strategies

Impact on 

System

stability
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Objectives

Actuator: Energy 

Storage mix Control 
Strategies

Impact on 

System

stability

➢ To Study and characterize the different
flexible resources that can deliver balancing
services.

➢To explore predictive control strategies for
grid-following and grid-forming converter
controls.

➢To test and validate the proposed control
strategies on a power hardware-in the-loop
platform.

➢To study the impact of the frequency
response control parameters on the
oscillatory stability of the system
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Why Hybrid Energy Storage?

Desired Frequency Response Characteristics
• Grid code requirements

Energy Storage Characteristics
Source: https://css.umich.edu/factsheets/us-grid-energy-storage-factsheet

➢Combine different operating characteristics
based on application

➢ Power and Energy densities
➢ Battery – slow varying power
➢ Supercapacitor – high frequency demand
➢ Other flexible resources can be represented

by an equivalent virtual battery model
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Types of Inverter-based Resources (IBRs)
➢ Grid-following IBRs

➢ Grid-forming IBRs

➢Frequency-responsive grid-following IBR control
➢Frequency-responsive grid-following IBR implemented using

model predictive control (MPC)
➢Rate-based MPC controller
➢Coordinating Frequency-responsive DERs
➢Validation

➢Isochronous grid-forming control
➢Grid-forming control implemented with MPC
➢Validation
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Grid-following IBR – Model Predictive Control

Consensus-based 
coordination

*Virtual Inertia Controller
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Grid-forming IBR – MPC implementation and Validation
Multi-mode control for microgrid transition
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Test System and Simulation Results
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Power Hardware-in-the-loop Experiment

➢ The remaining system, apart from the inverter is
simulated on OPAL RT in real-time

➢Challenges with OPAL RT run-time
➢Switched to in-built ARTEMiS model reduction
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Summary of Contributions

➢A storage sizing methodology for primary frequency and inertia reserve requirements

➢A model predictive control strategy with rate-based linearization for elimination of offset
errors in grid-friendly DERs.

➢A distributed model predictive control framework for grid-friendly DERs in grid-forming and
grid-following operation modes.

➢Validation of proposed control strategies using power hardware-in-the-loop experiment.

➢A stochastic backward-forward sweep power flow algorithm of islanded microgrids with
microgrid frequency as a state-variable.

➢Small signal modelling of grid-following and grid-forming DERs. Analysis of the impact of
frequency response parameter variation on the small signal stability of the system.
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Interesting Areas for Future Work
➢ Requirements for fault-ride through capabilities (FRC) for non-synchronous reserve providers.

➢ Placement of inertia reserves in large power systems.

➢Demand-side elasticity requirement and market mechanisms for new types of ancillary
services.

➢Urban energy planning for collective self-consumption and decentralization

➢ Singaporean context – possible interconnections for importing green energy (huge impact on
system reliability) – GW scale energy storage systems and subsea HVDC

➢ Economic challenges impacting power producers with increasing penetration of VREs, scope
for potential capacity markets.

➢ Pay for energy consumption -> Pay for reliability
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